

Mortality Rates of Aquatic Macroinvertebrate Populations when Exposed to Conventional and **Organic Road Salts Methods** and Water – 800 mL CaCl₂ NaC Control Macroinvertebrates – 3 container Average Mortality **Total Macroinvertebrate Fatalties** 35

Figure 3: Total number of macroinvertebrate fatalities

ance purposes.

Results

MgCl ₂	CMA	Beet Juice
4000 mg		
0 damselfly and 30 mayfly in each		
container		

Figure 4: Cumulative mortality of all macroinvertebrates included in this study. The blue bars represent the control data. The colored lines represent the different road salt treatments.

Discussion and Conclusion

Data for damselflies supports original
hypothesis
P-value for damselflies and mayflies
combined while comparing conventional and
organic was <.01
P-value for damselflies was 0.0165
P-value for mayflies was 0.19777
Mayflies could possibly be tolerant of road
salts at this concentration
Previous study had similar results while
looking at the differences in stoneflies and
caddisflies

. Bioaccumulation could occur and effect

- other organisms in the aquatic ecosystem
- . Small sample size of only 360
- macroinvertebrates in total
- . Stages and sizes of macroinvertebrates were not accounted for
- . Organic road salts may provide a safer
- alternative for macroinvertebrate
- populations and aquatic ecosystems

References

Akbar, K. F., Headley, A. D., Hale, W. H., & Athar, M. (2006). A comparative study of de-icing salts (sodium chloride and calcium magnesium acetate) on the growth of some roadside plants of England. Journal of Applied Sciences and Environmental Management, 10(1), 67-71. Benbow, M. E., & Merritt, R. W. (2004). Road-salt toxicity of select Michigan wetland macroinvertebrates under different testing conditions. Wetlands, Blasius, B. J., & Merritt, R. W. (2002). Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities Environmental Pollution, 120(2), 219-231 Dailey, K. R., Welch, K. A., & Lyons, W. B. (2014). Evaluating the influence of road salt on water quality of Ohio rivers over time. Applied geochemistry, Demers, C. L., & Sage, R. W. (1990). Effects of road deicing salt on chloride levels in four Adirondack streams. Water, Air, and Soil Pollution, 49(3-4), Kelting, D. L., Laxson, C. L., & Yerger, E. C. (2012). Regional analysis of the effect of paved roads on sodium and chloride in lakes. Water research, 46 Kelting, D. L., & Laxon, C. L. (2010). Review of effects and costs of road de-icing with recommendations for winter road management in the Adirondack Park. Adirondack Watershed Institute.. Piscart, C., Moreteau, J. C., & Beisel, J. N. (2006). Fluctuating asymmetry of natural populations of aquatic insects along a salinity gradient. Environmental Bioindicators, 1(4), 229-241 Sanzo, D., & Hecnar, S. J. (2006). Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution, 140(2), 247-256. Van Meter, Robin J., and Christopher M. Swan. "Road salts as environmental constraints in urban pond food webs." PloS one9.2 (2014): e90168.